AMEI's Current Trends in Diagnosis & Treatment

Register      Login

VOLUME 4 , ISSUE 2 ( July-December, 2020 ) > List of Articles

REVIEW ARTICLE

SARS-CoV (COVID-19) Pandemic—Detailed Insights into Diagnosis, Management, and Role of Indian Herbal Drugs

Rahat Kumar, Parminder Singh, Richa G Thaman, Rajiv Choudhari, Simranjeet Kaur

Citation Information : Kumar R, Singh P, Thaman RG, Choudhari R, Kaur S. SARS-CoV (COVID-19) Pandemic—Detailed Insights into Diagnosis, Management, and Role of Indian Herbal Drugs. Curr Trends Diagn Treat 2020; 4 (2):95-102.

DOI: 10.5005/jp-journals-10055-0107

License: CC BY-NC 4.0

Published Online: 01-12-2020

Copyright Statement:  Copyright © 2020; The Author(s).


Abstract

Coronavirus-2019 (COVID-19) (SARS-CoV-2), a pandemic by World Health Organization on March 11, 2020, is caused by corona viruses which is highly contagious with enveloped positive-sense RNA particles with a size of 60–140 nm in diameter. The COVID-19 infection may be an asymptomatic, mild, moderate or severe illness with severe potentially lethal complications, such as severe pneumonia, respiratory failure, acute respiratory distress syndrome, sepsis, and septic shock due to induction of cytological storm. Diagnostic confirmation is by reverse transcription polymerase chain reaction. The treatment is mainly symptomatic with management of complications. Antiviral drugs like lopinavir administration have not been proven very useful and other drugs, such as Arbidol and favipiravir have some hope. Remdesivir, a drug approved by USFDA, has shown benefits in critical patients with COVID-19 infection. The mode of action of chloroquine and hydroxychloroquine is via immunomodulatory effects. Ministry of AYUSH has recommended intake of ayurvedic herbal drugs like curcumin, tulsi, cinnamon, black pepper, ashwagandha, shunthi (dry ginger), and regular yoga. Curcumin and garlic are important anticytokine agents and decrease various substances like interleukin (IL)-1β, IL-10, and IL-12 by macrophages with additional fibrinolytic and antiplatelet aggregatory actions. Amla is an immunity booster. Tulsi due to phytocompounds and apigenin might be useful in COVID-19 infection. Cinnamomum has eugenol with antiviral activity. Black pepper suppresses the nuclear factor kappa-B signaling pathway. Ginger (Zingiber officinale) decreases various proinflammatory chemokines IL-8 and regulated upon activation, normal T-cell expressed and secreted. Mulethi has saponins which inhibit in vitro several DNA- and RNA-viruses. Thus, Indian herbal system of Ayurveda is very useful in COVID-19 infection.


HTML PDF Share
  1. Antagonism of the interferon-induced OAS-RNase L pathway by murine coronavirus ns2 protein is required for virus replication and liver pathology. Cell Host Microbe 2012;11(6):607–616. DOI: 10.1016/j.chom.2012.04.011.
  2. Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. J Virol 2006;80(16):7918–7928. DOI: 10.1128/JVI.00645-06.
  3. Drug design targeting the main protease, the Achilles’ heel of coronaviruses. Curr Pharm Des 2006;12(35):4573–4590. DOI: 10.2174/138161206779010369.
  4. Updated April 19, 2020 – CDC. Source: https://www.cdc.gov/coronavirus/2019-nCoV/summary.html. Accessed 10.05.2020.
  5. Coronavirus disease 2019: a clinical review. Eur Rev Med Pharmacol Sci 2020;24(8):4585–4596. DOI: 10.26355/eurrev̲202004̲21045.
  6. Chemokine upregulation in SARS coronavirus infected human monocyte derived dendritic cells. Blood 2005;106(7):2366–2376. DOI: 10.1182/blood-2004-10-4166.
  7. Novel immunodominant peptide presentation strategy: a featured HLA-A*2402-restricted cytotoxic T-lymphocyte epitope stabilized by intrachain hydrogen bonds from severe acute respiratory syndrome coronavirus nucleocapsid protein. J Virol 2010;84(22):11849–11857. DOI: 10.1128/JVI.01464-10.
  8. Profile of specific antibodies to the SARS-associated coronavirus. N Engl J Med 2003;349(5):508–509. DOI: 10.1056/NEJM200307313490520.
  9. Characterization of SARS-CoV-specific memory T cells from recovered individuals 4 years after infection. Arch Virol 2009;154(7):1093–1099. DOI: 10.1007/s00705-009-0409-6.
  10. Correspondence COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020;395(10229):1033–1034. DOI: 10.1016/S0140-6736(20)30628-0.
  11. Clinical and pathological investigation of patients with severe COVID-19. JCI Insight 2020;5(12):138070. DOI: 10.1172/jci.insight.138070.
  12. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol 2017;39(5):529–539. DOI: 10.1007/s00281-017-0629-x.
  13. An update on SARS-CoV-2/COVID-19 with particular reference to its clinical pathology, pathogenesis, immunopathology and mitigation strategies. Travel Med Infect Dis 2020;37:101755. DOI: 10.1016/j.tmaid.2020.101755.
  14. Gross examination report of a COVID-19 death autopsy. Fa Yi Xue Za Zhi 2020;36(1):21–23. DOI: 10.12116/j.issn.1004-5619.2020.01.005.
  15. Persistence of coronaviruses on inanimate surfaces and its inactivation with biocidal agents. J Hosp Infect 2020;104(3):246–251. DOI: 10.1016/j.jhin.2020.01.022.
  16. Highlights of traditional Chinese medicine frontline expert advice in the China national guideline for COVID-19. Eur J Integr Med 2020;36:101116. DOI: 10.1016/j.eujim.2020.101116.
  17. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect 2020;9(1):386–389. DOI: 10.1080/22221751.2020.1729071.
  18. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020:1–4. DOI: 10.1007/s00134-020-05991-x.
  19. Characteristics and prognostic value of peripheral blood T lymphocyte subsets in patients with severe influenza. Zhonghua Nei Ke Za Zhi 2020;59(3):200–206. DOI: 10.3760/cma.j.issn.0578-1426.2020.03.006.
  20. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395(10223):497–506. DOI: 10.1016/S0140-6736(20)30183-5.
  21. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J Clin Virol 2020;127:104370. DOI: 10.1016/j.jcv.2020.104370.
  22. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020;30(3):269–271. DOI: 10.1038/s41422-020-0282-0.
  23. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol 2020;16(3):155–166. DOI: 10.1038/s41584-020-0372-x.
  24. Treatment options for COVID-19: the reality and challenges. J Microbiol Immunol Infect 2020;53(3):436–443. DOI: 10.1016/j.jmii.2020.03.034.
  25. Systematic review of the efficacy and safety of antiretroviral drugs against SARS, MERS or COVID-19: initial assessment. J Int AIDS Soc 2020;23(4):e25489. DOI: 10.1002/jia2.25489.
  26. Arbidol monotherapy is superior to lopinavir/ritonavir in treating COVID-19. J Infect 2020;81(1):e21–e23. DOI: 10.1016/j.jinf.2020.03.060. S0163-4453(20)30188-2.
  27. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad, Ser B, Phys Biol Sci 2017;93(7):449–463. DOI: 10.2183/pjab.93.027.
  28. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J Biol Chem 2020;295(15):4773–4779. DOI: 10.1074/jbc.AC120.013056.
  29. Source: https://reference.medscape.com/drug/actemra-tocilizumab-999419. Accessed on 10.05.2020.
  30. Improvement of sepsis prognosis by ulinastatin: a systematic review and meta-analysis of randomized controlled trials. Front Pharmacol 2019;10:1370. DOI: 10.3389/fphar.2019.01370.
  31. Ulinastatin treatment for acute respiratory distress syndrome in China: a meta-analysis of randomized controlled trials. BMC Pulm Med 2019;19(1):196. DOI: 10.1186/s12890-019-0968-6.
  32. Intravenous administration of ulinastatin (human urinary trypsin inhibitor) in severe sepsis: a multicenter randomized controlled study. Intensive Care Med 2014;40(6):830–838. DOI: 10.1007/s00134-014-3278-8.
  33. SARS: Systematic review of treatment effects. PLoS Med 2006;3(9):e343. DOI: 10.1371/journal.pmed.0030343.
  34. Use of intravenous immunoglobulins for prophylaxis or treatment of infectious diseases. Clin Diagn Lab Immunol 2001;8(5):859–863. DOI: 10.1128/CDLI.8.5.859-863.2001.
  35. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. PNAS 2020;117(17):9490–9496. DOI: 10.1073/pnas.2004168117.
  36. Ivermectin: a systematic review from antiviral effects to COVID-19 complementary regimen. J Antibiot (Tokyo) 2020;73(9):593–602. DOI: 10.1038/s41429-020-0336-z.
  37. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antivir Res 2020;178:104787. DOI: 10.1016/j.antiviral.2020.104787.
  38. Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochem J 2012;443:851–856. DOI: 10.1042/BJ20120150.
  39. Diagnosis and clinical management of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) infection: an operational recommendation of Peking Union Medical College Hospital (V2.0). Working Group of 2019 Novel Coronavirus, Peking Union Medical College Hospital. Emerg Microbes Infect 2020;9(1):582–585. DOI: 10.1080/22221751.2020.1735265.
  40. Star anise (Illicium verum): chemical compounds, antiviral properties, and clinical relevance. Phytother Res 2020;34(6):1–20. DOI: 10.1002/ptr.6614.
  41. Traditional Chinese herbal medicine as a source of molecules with antiviral activity. Antivir Res 2013;97(1):1–9. DOI: 10.1016/j.antiviral.2012.10.006.
  42. Study on treatment of “cytokine storm” by anti-2019-nCoV prescriptions based on arachidonic acid metabolic pathway [in Chinese]. Zhongguo Zhong Yao Za Zhi 2020;45(6):1225–1231. DOI: 10.19540/j.cnki.cjcmm.20200224.405.
  43. Antiviral activity of five Asian medicinal pant crude extracts against highly pathogenic H5N1 avian influenza virus. Asian Pac J Trop Med 2017;10(9):871–876. DOI: 10.1016/j.apjtm.2017.08.010.
  44. Curcumin blocks cytokine-mediated NF-kappa B activation and proinflammatory gene expression by inhibiting inhibitory factor I-kappa B kinase activity. J Immunol 1999;163:3474–3483.
  45. Antiviral activity and possible mechanisms of action of pentagalloylglucose (PGG) against influenza A virus. Arch Virol 2011;156(8):1359–1369. DOI: 10.1007/s00705-011-0989-9.
  46. Molecular docking of selected phytocompounds with H1N1 Proteins. Bioinformation 2015;11(4):196–202. DOI: 10.6026/97320630011196.
  47. The natural product eugenol is an inhibitor of the ebola virus in vitro. Pharm Res 2019;36(7):104. DOI: 10.1007/s11095-019-2629-0.
  48. Water extract of Cinnamomum cassia Blume inhibited human respiratory syncytial virus by preventing viral attachment, internalization, and syncytium formation. J Ethnopharmacol 2013;147(2):321–326. DOI: 10.1016/j.jep.2013.03.010.
  49. Piperlongumine inhibits neuroinflammation via regulating NF-κB signaling pathways in lipopolysaccharide-stimulated BV2 microglia cells. J Pharmacol Sci 2018;137(2):195–201. DOI: 10.1016/j.jphs.2018.06.004.
  50. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): a review. Nutrients 2020;12(3):872. DOI: 10.3390/nu12030872.
  51. Fungal infection control by garlic extracts (Allium sativum L.) and modulation of peritoneal macrophages activity in murine model of sporotrichosis. Braz J Biol 2017;77(4):848–855. DOI: 10.1590/1519-6984.03716.
  52. The effect of Allium sativum (garlic) extract on infectious bronchitis virus in specific pathogen free embryonic egg. Avicenna J Phytomed 2016;6(4):458–267.
  53. Antithrombotic effects of odorless garlic powder both in vitro and in vivo. Biosci Biotechnol Biochem 2007;71(1):84–90. DOI: 10.1271/bbb.60380.
  54. Antiinflammatory effects of ginger and some of its components in human bronchial epithelial (BEAS-2B) cells. Phytother Res 2012;26(3):333–336. DOI: 10.1002/ptr.3558.
  55. Ginger (Zingiber officinale) prevents severe damage to the lungs due to hyperoxia and inflammation. Turk J Med Sci 2018;48(4):892–900. DOI: 10.3906/sag-1803-223.
  56. Zingerone ameliorates lipopolysaccharide-induced acute kidney injury by inhibiting Toll-like receptor 4 signaling pathway. Eur J Pharmacol 2016;772:108–114. DOI: 10.1016/j.ejphar.2015.12.027.
  57. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 2003;361(9374):2045–2046. DOI: 10.1016/S0140-6736(03)13615-X.
  58. 18β-Glycyrrhetinic acid from licorice root impairs dendritic cells maturation and Th1 immune responses. Immunopharmacol Immunotoxicol 2013;35(3):329–335. DOI: 10.3109/08923973.2013.768636.
  59. Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): a review. Altern Med Rev 2000;5(4):334–346.
  60. Withanolides against TLR4-activated innate inflammatory signalling pathways: a comparative computational and experimental study. Phytother Res 2017;31(1):152–163. DOI: 10.1002/ptr.5746.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.