AMEI's Current Trends in Diagnosis & Treatment

Register      Login

VOLUME 7 , ISSUE 1 ( January-June, 2023 ) > List of Articles


Artificial Intelligence in Public Health: Facts and Hyperboles

Pooja Sadana, Priyanka Devgun

Keywords : Artificial intelligence, Deep learning, Natural language processing

Citation Information : Sadana P, Devgun P. Artificial Intelligence in Public Health: Facts and Hyperboles. Curr Trends Diagn Treat 2023; 7 (1):7-10.

DOI: 10.5005/jp-journals-10055-0154

License: CC BY-NC 4.0

Published Online: 21-07-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Artificial intelligence is any intuitive software that is capable of mimicking the human brain in terms of intention, contemplation, and judgment. The field of medicine has been revolutionized by artificial intelligence. It can provide substantial improvements in all areas of healthcare from diagnostics to research. Artificial intelligence can find acceptance in the healthcare environment only if human remains the master and technology the server.

  1. Iqbal H. Sarker AI-based modeling: Techniques, applications and research issues towards automation, intelligent and smart systems. SN Comput Sci 2022;3(2):158.
  2. Lee S, Lim S. Living Innovation: From Value Creation to the Greater Good. Emerald Publishing Limited: Bingley, UK; 2018. pp. 2–4.
  3. McCarthy J. What is Artificial Intelligence?; 2002 (accessed on 02.01.2023). Available from:
  4. Reddy S, Fox J, Purohit MP. Artificial intelligence-enabled healthcare delivery. J R Soc Med 2019;112(1):22–28. DOI: 10.1177/0141076818815510.
  5. Available from: (accessed on 02.01.2023).
  6. Available from: (accessed on 02.01.2023).
  7. Deo RC. Machine learning in medicine. Circulation 2015;132(20): 1920–1930. DOI: 10.1161/CIRCULATIONAHA.115.001593.
  8. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521(7553): 436–444. DOI: 10.1038/nature14539.
  9. Amato F, López A, Peña-Méndez E, et al. Artificial neural networks in medical diagnosis. J Appl Biomed 2013;11(2):47–58. DOI: 10.2478/v10136-012-0031-x.
  10. Baclic O, Tunis M, Young K, et al. Challenges and opportunities for public health made possible by advances in natural language processing. Can Commun Dis Rep 2020;46(6):161–168. DOI: 10.14745/ccdr.v46i06a02.
  11. Natural Language Processing. Available from:
  12. Zeng D, Cao Z, Neill DB. Artificial intelligence-enabled public health surveillance—from local detection to global epidemic monitoring and control. In: Artificial Intelligence in Medicine (Chapter 22). Elsevier; 2021. pp. 437–453. Available from:
  13. PAHO WHO Artificial Intelligence in Public Health I
  14. Floridi L, Cowls J, Beltrametti M, et al. AI4People – An ethical framework for a good AI society: Opportunities, risks, principles, and recommendations. Minds Mach 2018;28(4):689–707. DOI: 10.1007/s11023-018-9482-5.
  15. Muller MM, Salathe M. Crowdbreaks: Tracking health trends using public social media data and crowdsourcing. Front Public Health 2019;7:81. DOI: 10.3389/fpubh.2019.00081.
  16. Borda A, Molnar A, Neesham C, et al. Ethical issues in AI-enabled disease surveillance: Perspectives from global health. Appl Sci 2022;12(8):3890. DOI: 10.3390/app12083890.
  17. Serban O, Thapen N, Maginnis B, et al. Real-time processing of social media with SENTINEL: A syndromic surveillance system incorporating deep learning for health classification. Inf Process Manag 2019;56(3):1166–1184. DOI: 10.1016/j.ipm.2018.04.011.
  18. Bohr A, Memarzadeh K. The rise of artificial intelligence in healthcare applications. Artif Intell Healthcare 2020:25–60. DOI: 10.1016/B978-0-12-818438-7.00002-2.
  19. Pesapane F, Codari M, Sardanelli F. Artificial intelligence in medical imaging: Threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp 2018;2(1):35. DOI: 10.1186/s41747-018-0061-6.
  20. Amisha, Malik P, Pathania M, et al. Overview of artificial intelligence in medicine. J Family Med Prim Care 2019;8(7):2328–2331. DOI: 10.4103/jfmpc.jfmpc_440_19.
  21. Le D, Yoon, SN. Application of artificial intelligence-based technologies in the healthcare industry: Opportunities and challenges. Int J Environ Res Public Health 2021;18(1):271. DOI: 10.3390/ijerph1801027.
  22. Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Healthc J 2019;6(2):94–98. DOI: 10.7861/futurehosp.6-2-94.
  23. Available from: (accessed on 01.02.2023).
  24. Pramanik M, Chowdhury K, Rana MJ, et al. Climatic influence on the magnitude of COVID-19 outbreak: A stochastic model-based global analysis. Int J Environ Health Res 2020. DOI: 10.1080/09603123.2020.1831446.
  25. Al-Raeei M. The forecasting of COVID-19 with mortality using SIRD epidemic model for the United States, Russia, China, and the Syrian Arab Republic. AIP Adv 2020;10(06):065325. DOI:10.1063/5.0014275.
  26. Lalmuanawma S, Hussain J, Chhakchhuak L. Applications of machine learning and artificial intelligence for COVID-19 (SARS-CoV-2) pandemic: A review. Chaos Solitons Fractals 2020;139:110059. DOI: 10.1016/j.chaos.2020.110059.
  27. Tang G, Westover K, and Jiang S. Contact tracing in healthcare settings during the COVID-19 pandemic using bluetooth low energy and artificial intelligence – A viewpoint. Front Artif Intell 2021;4:666599. DOI: 10.3389/frai.2021.666599.
  28. Harmon SA, Sanford TH, Xu S., et al. Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets. Nat Commun 2020;11(1):4080. DOI: 10.1038/s41467-020-17971-2.
  29. Pal M, Parija S, Mohapatra RK, et al. Symptom-based COVID-19 prognosis through AI-based IoT: A bioinformatics approach. Biomed Res Int 2022;2022:3113119. DOI: 10.1155/2022/3113119.
  30. Choi S, Hong JY, Kim YJ, et al. Predicting psychological distress amid the COVID-19 pandemic by machine learning: Discrimination and coping mechanisms of Korean immigrants in the US. Int J Environ Res Public Health 2020;17(17):6057. DOI: 10.3390/ijerph17176057.
  31. Available from: (accessed on 31.01.2023).
  32. Naik N, Hameed BMZ, Shetty DK, et al. Legal and ethical consideration in artificial intelligence in healthcare: Who takes responsibility? Front Surg 2022;9:862322. DOI: 10.3389/fsurg.2022.862322.
  33. Phillips-Wren G, Ichalkaranje N, Jain LC. Intelligent decision making: An AI-based approach. Studies in Computational Intelligence. Springer; 2008. DOI: 10.1007/978-3-540-76829-6.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.