AMEI's Current Trends in Diagnosis & Treatment

Register      Login

VOLUME 4 , ISSUE 2 ( July-December, 2020 ) > List of Articles


Transferring Mosaic Embryos during ART Cycles: Increasing the Load of Genetic Diseases in Human Generations—A Critical Analysis

Simranpreet Kaur, Inder MS Sandhu, Madhu Nagpal

Citation Information : Kaur S, Sandhu IM, Nagpal M. Transferring Mosaic Embryos during ART Cycles: Increasing the Load of Genetic Diseases in Human Generations—A Critical Analysis. Curr Trends Diagn Treat 2020; 4 (2):112-116.

DOI: 10.5005/jp-journals-10055-0100

License: CC BY-NC 4.0

Published Online: 01-12-2020

Copyright Statement:  Copyright © 2020; The Author(s).


“Mosaic” as an adjective describes any type of work or art which is produced by joining of many small pieces differing in size and color. Virtually all multicellular organisms are mosaics of cells with different forms and functions. Normal developmentally determined mosaicism involves permanent changes in the DNA of somatic cells giving rise to specialized cells of various organ systems of the body. Several mechanisms, such as cell cycle dysregulation, centrosome overduplication, and cancer formation, have been reported as end products of mosaicism, either chromosomal or germline, arisen prenatally or postnatally, in many cases. There is an extensive literature present which describes the presence of genetic mosaicism in human diseases. With the development of more advanced molecular genetic diagnostic techniques, it has been recognized that genetic mosaicism is involved in many monogenic and polygenic complex diseases. This review highlights the dilemma between the creation and transferring of the mosaic embryos detected by preimplantation genetic diagnosis aneuploidy testing during assisted reproductive technology cycles. The main question of concern is not only the implantation potential of the accepted mosaic embryos but also the well-being of future generations to follow from these phenotypically normal mosaic individuals.

  1. Mosaicism in health and disease—clones picking up speed. Nat Rev Genet 2017;18(2):128–142. DOI: 10.1038/nrg.2016.145.
  2. Genetic mosaicism and cancer: cause and effect. Cancer Res 2018;78(6):1375–1378. DOI: 10.1158/0008-5472.CAN-17-2769.
  3. The origin mechanisms, incidence and clinical consequences of chromosomal mosaicism in humans. Hum Reprod Update 2014;20(4):571–581. DOI: 10.1093/humupd/dmu016.
  4. Mechanisms and consequences of somatic mosaicism in humans. Nat Rev Genet 2002;3(10):748–758. DOI: 10.1038/nrg906.
  5. Detectable clonal mosaicism in the human genome. Semin Hematol 2013;50(4):348–359. DOI: 10.1053/j.seminhematol.2013.09.001.
  6. Mosiac turner syndrome presenting with a 46,XY karyotype. Case Rep Obstet Gynecol 2019:3719178:1–3. DOI: 10.1155/2019/3719178.
  7. In utero exposure to genotoxicants leading to genetic mosaicism: an overlooked window of susceptibility in genetic toxicology testing? Environ Mol Mutagen 2020;61(1):55–65. DOI: 10.1002/em.22347.
  8. Post-zygotic point mutations are an underrecognised source of de novo genomic variation. Am J Hum Genet 2015;97(1):67–74. DOI: 10.1016/j.ajhg.2015.05.008.
  9. A genomic view of mosaicism and human disease. Nat Rev Genet 2013;14(5):307–320. DOI: 10.1038/nrg3424.
  10. Timings, rates and spectra of human germline mutation. Nat Genet 2016;48(2):126–133. DOI: 10.1038/ng.3469.
  11. Large, three-generation human families reveal post-zygotic mosaicisim and variability in germline mutation accumulation. Elife 2019;8:e46922. DOI: 10.7554/elife.46922.
  12. Chromosomal mosaicism confined to the placenta in human conceptions. Science 1983;221(4611):665–667. DOI: 10.1126/science.6867735.
  13. Confined placental mosaicism. J Med Genet 1996;33(7):529–533. DOI: 10.1136/jmg.33.7.529.
  14. Gestational mutations and carcinogenesis. Math Biosci 2005;197(2):188–210. DOI: 10.1016/j.mbs.2005.06.003.
  15. Germ line mosaicism. Hum Genet 1998;102(4):381–386. DOI: 10.1007/s004390050708.
  16. The role of de novo mutations in adult-onset neurodegenerative disorders. Acta Neuropathol 2019;137(2):183–207. DOI: 10.1007/s00401-018-1939-3.
  17. Somatic mosaicism and disease. Curr Biol 2014;24(12):R577–R581. DOI: 10.1016/j.cub.2014.05.021.
  18. Assessing the true incidence of mosaicism in preimplantation embryos. Fertil Steril 2017;107(5):1107–1112. DOI: 10.1016/j.fertnstert.2017.03.019.
  19. Inherited aneuploidy: germline mosaicism. Cytogenet Genome Res 2011;133(2–4):136–140. DOI: 10.1159/000323606.
  20. Diagnosis and clinical management of embryonic mosaicism. Fertil Steril 2017;107(1):6–11. DOI: 10.1016/j.fertnstert.2016.10.006.
  21. Implantation potential of mosaic embryos. Syst Biol Reprod Med 2017;63(3):206–208. DOI: 10.1080/19396368.2017.1296045.
  22. Healthy babies after intrauterine transfer of mosaic aneuploid blastocysts. N Engl J Med 2015;373(21):2089–2090. DOI: 10.1056/NEJMc1500421.
  23. Degree of mosaicism in trophoectoderm does not predict pregnancy potential: a corrected analysis of pregnancy outcomes following transfer of mosaic embryos. Reprod Biol Endocrinol 2018;16(1):6. DOI: 10.1186/s12958-0183-0322-5.
  24. The developmental potential of mosaic embryos. Fertil Steril 2015;104:e96. DOI: 10.1016/j.fertnstert.2015.07.297.
  25. Aneuploidy in human spermatozoa: FISH analysis in men with constitutional chromosomal abnormalities and in infertile men. Reproduction 2001;121(5):655–666. DOI: 10.1530/rep.0.1210655.
  26. Sex chromosome abnormalities after intracytoplasmic sperm injection. Lancet 1995;346(8982):1095–1096.
  27. Incidence of disomic sperm nuclei in 45 infertile men. Hum Reprod 1997;12(3):468–473. DOI: 10.1093/humrep/12.3.468.
  28. Sex chromosome micromosaicism in infertile men with normal karyotypes. Fertil Steril 2010;93(6):1903–1906. DOI: 10.1016/j.fertnstert.2007.11.094.
  29. Parental somatic mosaicism is underrecognised and influences recurrence risk of genomic disorders. Am J Hum Genet 2014;95(2):173–182. DOI: 10.1016/j.ajhg.2014.07.003.
  30. In utero origins of childhood leukemia. Early Hum Dev 2005;81(1):123–129. DOI: 10.1016/j.earlhumdev.2004.10.004.
  31. The risk of chromosomal abnormalities following ICSI. Hum Reprod 1996 May;11(5):924–925. DOI: 10.1093/oxfordjournals.humrep.a019319.
  32. Correlation between semen parameters and sperm aneuploidy rates investigated by fluorescence in situ hybridisation in infertile men. Hum Reprod 2000;15(2):351–365. DOI: 10.1093/humrep/15.2.351.
  33. Aneuploidy in human sperm: a review of the frequency and distribution of aneuploidy, effects of donor age and lifestyle factors. Cytogenet Cell Genet 2000;90(3–4):219–226. DOI: 10.1159/000056773.
  34. Somatic evolutionary genomics: mutations during development cause highly variable genetic mosaicism with risk of cancer and neurodegeneration. Proc Natl Acad Sci U S A 2010;107(Suppl 1);1725–1730. DOI: 10.1073/pnas.0909343106.
  35. PGDIS Newsletter July 2016
  36. Mosaicism in preimplantation human embryos: when chromosomal abnormalities are the norm. Trends Genet 2017;33(7):448–463. DOI: 10.1016/j.tig.2017.04.001.
  37. Germline mosaicism in Apert Syndrome. Clin Genet 1986;29:429–433. DOI: 10.1111/j.1399-0004.1986.tb00516.x.
  38. Dominant electrodactyly and possible germinal mosaicism. J Med Genet 1972;9(3):316–320. DOI: 10.1136/jmg.9.3.316.
  39. Genetic mosaicism: what Gregor Mendel didn't know. J Clin Invest 1995;95(2):443–444. DOI: 10.1172/JCI117682.
  40. Review and hypothesis: somatic mosaicism: observations related to clinical genetics. Am J Hum Genet 1988;43(4):355–363.
  41. The paternal genome and the health of the assisted reproductive technology child. Asian J Androl 2015;17(4):616–622. DOI: 10.4103/1008-682X.153301.
  42. Reproductive genetic counselling in genomic era. EC Gynaecology 2015;2(1):132–148.
  43. Intra-cytoplasmic sperm injection and infertility. Nat Genet 2001;29(2):131. DOI: 10.1038/ng1001-131.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.