AMEI's Current Trends in Diagnosis & Treatment

Register      Login

VOLUME 5 , ISSUE 1 ( January-June, 2021 ) > List of Articles

ORIGINAL RESEARCH ARTICLE

Twenty-four-hour Requirement of Rescue Analgesia after Upper Limb Surgery under Supraclavicular Brachial Plexus Block: A Role of Nalbuphine as an Adjuvant to Levobupivacaine

Shivika Aggarwal, Anita Kumari, Ruchi Gupta

Keywords : Analgesia, Levobupivacaine, Nalbuphine hydrochloride, Postoperative pain, Supraclavicular brachial plexus

Citation Information : Aggarwal S, Kumari A, Gupta R. Twenty-four-hour Requirement of Rescue Analgesia after Upper Limb Surgery under Supraclavicular Brachial Plexus Block: A Role of Nalbuphine as an Adjuvant to Levobupivacaine. Curr Trends Diagn Treat 2021; 5 (1):16-20.

DOI: 10.5005/jp-journals-10055-0115

License: CC BY-NC 4.0

Published Online: 00-00-0000

Copyright Statement:  Copyright © 2021; The Author(s).


Abstract

Background: Opioids have been used with peripheral nerve blocks for its synergistic effect to enhance the postoperative analgesic effectiveness of regional block. Nalbuphine, a newer opioid with an analgesic equivalence of morphine, has a ceiling effect on respiratory depression. The aim of the present study was to evaluate the effect of nalbuphine when used as an adjuvant to levobupivacaine on 24-hour postoperative analgesic requirement after brachial plexus block (BPB). Materials and methods: Sixty adult patients of either sex of American Society of Anesthesiologists (ASA) physical status I and II were randomized into two groups of 30 each to receive a total volume of 30 mL of study drug for supraclavicular brachial plexus block (SBPB): Group N—29 mL of 0.5% levobupivacaine with 1 mL of 10 mg nalbuphine; Group S—29 mL of 0.5% levobupivacaine with 1 mL of normal saline. Patients observed for 24-hour postoperative mean requirement of rescue analgesia, that is, diclofenac sodium, block characteristics, visual analog scale (VAS) scores, and the associated complications. Results: Demographic profile was comparable between the two groups. The mean dose of rescue analgesic required between the groups N and S was 127.5 ± 34.96 mg and 150 ± 37.5 mg (p = 0.000), respectively. The average VAS score at different time intervals was highly significant between the two groups (p <0.05). Similarly, block characteristics were statistically significant between the two groups; that is, onset was early, but the duration was prolonged in group N (p <0.05). Complications, although more in group N, were minor and statistically insignificant (p >0.05). Conclusion: Nalbuphine 10 mg as an adjunct to 0.5% levobupivacaine significantly reduced the requirement of rescue analgesia compared to placebo, with no significant major adverse effects.


HTML PDF Share
  1. Pick CG, Paul D, Pasternak GW. Nalbuphine, a mixed kappa 1 and kappa 3 analgesic in mice. J Pharmacol Exp Ther 1992;262(3):1044–1050. PMID: 1326621.
  2. Klepper ID, Rosen M, Vickers MD, et al. Respiratory function following nalbuphine and morphine in anaesthetized man. Br J Anaesth 1986;58(6):625–629. DOI: 10.1093/bja/58.6.625.
  3. Ahmed F, Narula H, Khandelwal M, et al. A comparative study of three different doses ofnalbuphine as an adjuvant to intrathecal bupivacaine for postoperative analgesia in abdominal hysterectomy. Indian J Pain 2016;30(1):23–28. DOI: 10.4103/0970-5333.173457.
  4. Jensen MP, Karoly P, Braver S. The measurement of clinical pain intensity: a comparison of six methods. Pain 1986;27(1):117–126. DOI: 10.1016/0304-3959(86)90228-9.
  5. De Cassai A, Boscolo A, Tonetti T, et al. Assignment of ASA-physical status relates to anesthesiologists’ experience: a survey-based national-study. Korean J Anesthesiol 2019;72(1):53–59. DOI: 10.4097/kja.d.18.00224.
  6. Lee R, Kim YM, Choi EM, et al. Effect of warmed ropivacaine solution on onset and duration of axillary block. Korean J Anesthesiol 2012;62(1):52–56. DOI: 10.4097/kjae.2012.62.1.52.
  7. Malinzak EB, Gan TJ. Regional anesthesia for vascular access surgery. Anaeth Analg 2009;109(3):976–980. DOI: 10.1213/ane.0b013e3181adc208.
  8. Schubert AK, Dinges HC, Wulf H, et al. Interscalene versus supraclavicular plexus block for the prevention of postoperative pain after shoulder surgery: a systematic review and meta-analysis. Eur J Anaesthesiol 2019;36(6):427–435. DOI: 10.1097/EJA.0000000000000988.
  9. Kumari A, Chhabra H, Gupta R, et al. Comparative study of effectiveness of tramadol and butorphanol as adjuvants to levobupivacaine for supraclavicular brachial plexus block. Anesth Essays Res 2019;13(3):446–451. DOI: 10.4103/aer.AER_110_19.
  10. Patil KN, Singh ND. Clonidine as an adjuvant to ropivacaine-induced supraclavicular brachial plexus block for upper limb surgeries. J Anaesthesiol Clin Pharmacol 2015;31(3):365–369. DOI: 10.4103/0970-9185.161674.
  11. Dogru K, Yildirim D, Ulgey A, et al. Adding magnesium to levobupivacaine for axillary brachial plexus block in arteriovenous fistule surgery. Bratisl Lek Listy 2012;113(10):607–609. DOI: 10.4149/bll_2012_136.
  12. Nagpal V, Rana S, Singh J, et al. Comparative study of systemically and perineurally administered tramadol as an adjunct for supraclavicular brachial plexus block. J Anaesthesiol Clin Pharmacol 2015;31(2):191–195. DOI: 10.4103/0970-9185.155147.
  13. Rajkhowa T, Das N, Parua S, et al. Fentanyl as an adjuvant for brachial plexus block: a randomized comparative study. Int J Clin Trials 2016;3(2):64–67. DOI: 10.18203/2349-3259.ijct20160996.
  14. Mohamed KH, Abdelrahman KA, Elameer AN, et al. Morphine as an adjuvant to local anesthetics in axillary brachial plexus block in forearm and hand surgery. J Curr Med Res Pract 2019;4(2):131–136. DOI: 10.4103/JCMRP.JCMRP_35_19.
  15. Gunion MW, Marchionne AM, Anderson TM. Use of the mixed agonist-antagonist nalbuphine in opioid based analgesia. Acute Pain 2004;6(1):29–39. DOI: 10.1016/j.acpain.2004.02.002.
  16. Gupta K, Jain M, Gupta PK, et al. Nalbuphine as an adjuvant to 0.5% bupivacaine for ultrasound-guided supraclavicular brachial plexus blockade. Indian J Pain 2016;30(3):176–180. DOI: 10.4103/0970-5333.198024.
  17. Kothari R, Fernandes S, Atkar A, Paliwal S. A prospective observational study to compare the effectiveness of bupivacaine versus levobupivacaine in supraclavicular brachial plexus block. Int J Contemp Med Res. 2020;7(9):11-6. DOI: org/10.21276/ijcmr.2020.7.9.26.
  18. Tejaswi S, Sree MS. A comparative study of varying doses of nalbuphine 5 mg vs 10 mg with ropivacaine in supraclavicular brachialplexus block: a prospective, double-blind, randomized trial. IOSRJ J Med Dent Sci. 2019;18(11):45–49. DOI: 10.9790/0853-1811074549.
  19. Kalika P, Xue R, Zheng J, et al. Efficacy of nalbuphine as an adjuvant to ropivacaine in ultrasound-guided supraclavicular brachial block: a prospective randomized controlled study. Clin J Pain 2020;36(4):267–272. DOI: 10.1097/AJP.0000000000000803.
  20. Das A, RoyBasunia S, Mukherjee A, et al. Perineural nalbuphine in ambulatory upper limb surgery: a comparison of effects of levobupivacaine with and without nalbuphine as adjuvant in supraclavicular brachial plexus block – a prospective, double-blinded, randomized controlled study. Anesth Essays Res 2017;11(1):40–46. DOI: 10.4103/0259-1162.200225.
  21. Chiruvella S, Konkyana SK, Nallam SR, et al. Supraclavicular brachial plexus block: comparison of varying doses of nalbuphine combined with levobupivacaine: a prospective, double-blind, randomized trial. Anesth Essays Res 2018;12(1):135–139. DOI: 10.4103/aer.AER_197_17.
  22. Rehab OM, Al Shreif SI, Amr YM, et al. Different low doses of levobupivacaine 0.5% with nalbuphine in spinal anesthesia for transurethral resection of prostate surgery. Tanta Med J 2017;45(2):57–63. DOI: 10.4103/tmj.tmj_9_17.
  23. Abdelhaq MM, Elramely MA. Effect of nalbuphine as adjuvant to bupivacaine for ultrasound-guided supraclavicular brachial plexus block. Open J Anesthesiol 2016;6(3):20–26. DOI:10.4236/ojanes.2016.63004.
  24. Likar R, Koppert W, Blatnig H, et al. Efficacy of peripheral morphine analgesia in inflamed, noninflamed and perineural tissue of dental surgery patients. J Pain Symptom Manage 2001;21(4):330–337. DOI: 10.1016/s0885-3924(01)00251-2.
  25. Jain K, Sethi SK, Gupta S, et al. Efficacy of nalbuphine as an adjuvant to 0.5% ropivacaine for ultrasound-guided supraclavicular brachial plexus block in upper limb surgeries: a prospective randomized double-blind study. Indian Anaesth Forum 2019;20(2):82–88. DOI: 10.4103/TheIAForum.TheIAForum_31_19.
  26. Nazir N, Jain S. Randomized controlled trial for evaluating the analgesic effect of nalbuphine as an adjuvant to bupivacaine in supraclavicular block under ultrasound guidance. Anesth Essays Res 2017;11(2):326–329. DOI: 10.4103/0259-1162.194590.
  27. Fanelli G, Casati A, Garancini P, et al. Nerve stimulator and multiple injection technique for upper and lower limb blockade. Anesth Analg 1999;88(4):847–852. DOI: 10.1097/00000539-199904000-00031.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.